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SOME IDENTITIES OF DERANGEMENT NUMBERS

TAEKYUN KIM, DAE SAN KIM, DMITRY V. DOLGY, AND JONGKYUM KWON

ABSTRACT. In combinatorial mathematics, a derangement is a permuta-
tion of the elements of a set, such that no element appears in its original
position. That is, a derangement is a permutation that has no fixed points.
The number of derangements of an n-element set is called the n-th derange-
ment number. In this paper, we study some identities involving derange-
ment numbers, r-derangement numbers and some other special numbers
which are derived from various generating functions.

1. Introduction

A derangement is a permutation with no fixed points. In other words, a
derangement of a set leaves no elements in the original place. The number of
derangements of a set of size n, denoted d,, is called the n-th derangement
number (see [1,2,10]).

The first few derangement numbers, starting from n = 0, are 1,0,2,9,44,265,
1854,14833,133496,4684570, - - -. For n > 0, the derangement numbers are given

by
dy = nl — (Z‘) (n— 1)1+ (’;) (n—2)! - <’;> (n—=3) 44 (=1)" <Z>01

- <Z>n— N(=1)F = zn: . (see [1,2,10)).
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From (1.1), we can derive the generating function of derangement numbers which
are given by

oo

o0
tn

E dp— = n!
n!

n=0 n=0 k=0

(1.2)
o (- ¢ g
_ n __ -
=2 Xt
k=0 n=~k
By (1.2), we easily get the following recurrence relations:
dp=n-dp_1+(-1)", (n>1), (1.3)
d, = (TL - l)(dn—l + dn—2)7 (n > 2)? (866[1723 10})7 (14)

and

gdk (Z) =nl, (n>0). (1.5)

By (1.1), we easily get

! ! ~ (D" ! ! ~ (U
dn—n.:n.z o —n.:n.z o , (n>0), (1.6)
k=0 k=1
and
li dn g~ (CDF 1.7
nllléoﬁ*;) K e (1.7)

The number of arrangements of any subset of n distinct objects is the number
of one-to-one sequences that can be formed from any subset of n distinct objects.

The number of arrangements of any subject of n distinct objects are called
arrangement numbers which are denoted by a,, (n > 0). The arrangement
numbers are given by

ann+(7f>”_1'+<n> +<Z>O! (1.8)
2 (o sr=n

0
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From (1.8), we note that
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By (1.9), we easily get
ao=1,ap =nap_1 +1, (TL > 1)7
and

anp =n—1)(an-1+an—2)+2, (n>2).

(1.10)

(1.11)

For 0 < r < n, the r-derangement numbers, denoted dslr ), are the number of
derangements on n+r elements under the restriction that the first r elements are
in disjoint cycles. It is known that the generating function of the r-derangement

numbers is given by

= tn tr
Zdy)ﬁ = me_t, (see [10]).
n=0 ’ ’

As is well known, the Bell numbers are defined by

, = t"
e 1= Z Belnﬁ, (see [5,9]).

n=0

On the other hand,

oo
¢ 1 ¢ 1 1
ee—lz_ee :_§ :_ekt
e e k!
k=0

Thus, by (1.13) and (1.14), we get
1 0 Ln

Beln = g F )
k=0

(n>0), (see [3,4,5]).

For n > 0, the Stirling numbers of the first kind are defined as

(1.12)

(1.13)

(1.14)

(1.15)

127



T. Kim, D. S. Kim, D. V. Dolgy and J. Kwon

@) =z(x—-1)--(x—n+1)= ZSl(n,l)acl, (n>1), (x)o=1. (1.16)
The Stirling numbers of the second kind are given by
ZSZ n,)(x);, (n>0), (see[9]). (1.17)

The ordered Bell numbers are given by the generating function

an ,  (see [3]). (1.18)

_et

It is well known that the Euler numbers are defined by

2 — . t"
et+1:ZOE”H’ (see [3 —9)). (1.19)
n=

From (1.17) and (1.18), we have

by, = i: m!Sa(n,m), (n>0). (1.20)

m=0

In this paper, we investigate some properties of several special numbers.
Then we proceed to give some new identities involving derangement numbers,
r-derangement numbers and some other special numbers like Bell numbers, Eu-
ler numbers and Stirling numbers of the first and second kind which are derived
from various generating functions.

2. Some identities of derangement numbers.

From (1.13), we note that
Z Belk log (1—1)

Z (Z Belksl(n,k)(—l)"> %

k=0

(2.1)
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On the other hand,

1
—t = (1— § (1—
e <1—t ) t) d t)

n=0

- (2.2)
tn
=do + Zl(dn - ndn—la-
Thus, by (2.1) and (2.2), we get
do = Bely =1, BelSi(n, k) = (—1)"(dn — ndp_1), (n > 1).
h=0 (2.3)
Indeed, ZBelkSl(n,k) =1, (n>1).
k=0
By replacing ¢t by —e! + lin (1.2), we get
b (et > 1
etele =1 = de(—l)km(et —1)F
SR (2.4)
= < (_1)kdk782(n7 k)) I
n=0 \k=0
On the other hand,
etele' 1) = i(—l)lﬁ i Bel =
N I "m!
o(l):() . m=0 (25)
= (Z (”)Bez,,,,(—n"—m) A
n=0 \m=0 m w

Therefore, by (2.4) and (2.5), we obtain the following lemma.

Lemma 2.1. Forn > 0, we have

n

(—1)*dySa(n, k) = (" (—1)"* Bel.
Z k92 2 <k> k

k=0

Let us replace t by —e’ in (1.2). Then we have
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1 et - di, k_tk
1 Z _!<71) ¢
k=0
o (o gk i (2.6)
X ()
] nl
n=0 \k=0
On the other hand,
1 et _ E 2 eet_l
et +1 2 \et+1
> l > m
e t t
=3 <Z Ell_'> <Z Belm—> (2.7)
=0 m=0
€ — " /n t"
= 5 z:o (kzo <k) Belk.Enk> m
n= =l

Therefore, by (2.6) and (2.7), we obtain the following theorem.
Theorem 2.2. Forn >0, we have

" (n 2 o dF kin
> <k)BelkE"k = EZH(_D k™.

k=0 k=0
Remark. We note that

1 ot e 2 et 1 e [ tt =1 ¢ m
e =5 () =3 <ZZE7'> (Z_Oﬁe - )
§ ZEZ 1 Z Z SQ(k,m)E
=0 : m=0k=m 9
e (St ([ th (28)
5 ZEll—, Z Z Sa(k,m) %l
=0 : k=0 \m=0
S n k
e n t"
=3 > (Z > <k Sa(k, m)En_k> ;
n=0 \k=0m=0
By (2.6) and (2.8), we get
n k 00
n 2 dF
> () Sakum) B = 2 Y ()M (29)

k=0
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1—1x2:(1ix”) (1+:c ) (Zdl .><§:dm(

= Z <Z< )dldn o= )’”) fl—r: 7

n=0
On the other hand,

- 0 x2'n
1—w2 ij :;) )'(211)!'

By (2.10) and (2.11), we get

= 2 = " /n x
S = 5 (3 (o) 5

n=0 n=0 \I1=0

-3 (S () i

n=0 \ [=0

Comparing the coefficients on both sides of (2.12), we have

2n+1
2n+1 _
Z < ; )dld2n+1l(1)l '=0,

1=0
and

1=0
By (2.14), we easily get

Therefore, by (2.13) and (2.15), we obtain the following theorem.

Theorem 2.3. Forn > 0, we have

(1) () o

[es) 2n+1 2n+1
2n +1 -1 T
+ Z (Z ( )dld2n+1—l(_1) ) @nr1)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

131



132

T. Kim, D. S. Kim, D. V. Dolgy and J. Kwon

and

=0

For r € N, we observe that

1 " 1 " —rt _rt 1 —t ]‘ —t 1 —1 rt
(1_—t> _<1_—t> € ¢ _<1—t€ >X<1—t6 )X<1—t6 >X€

r—times

_ 0 k 4 d i tk 00 mtm
= ICXZ: M,;h:k (lh...’lr) 1,01+ - Ay, E 7;)7" %

0
o0 n k’ n
) o S A TR T

k=01l1++l,=k

where (, o

(%)T:i<”+:L_1>t”:§:n!<"+;_l>i—n!. (2.17)

n=0 n=0

lr) = ﬁ On the other hand,

From (2.16) and (2.17), we have

n+r—1 1< k n\ ,_
AN - DD DI (R [ () L WA Resty

! ly,--
k=0l +-+lp=k
Therefore, by (2.18), we obtain the following theorem.

Theorem 2.4. Forn >0, r € N, we have
Y n r—1 1 - k n\ n—k
Z(k‘) <’)’L—k‘> :EZ Z (ll ool ><k>7” dlldl2"‘le.
k=0 k=0 ly4plp=k S 17T

Replacing t by e’ — 1 in (1.2), we get

1 ‘ = 1
—(ef=1) _ t k
9 _et’ —dek!(e -1

k=0

00 n n
> < dkSQ(n,k)> —.
n=0 \k=0 n

(2.19)

On the other hand,
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= b k
> Z<—1>""Sz<k,m>%> (2.20)
0 9
N - g L n
= Z ( Z <Z>(_1)mg2(k~,m)bn_k> %

Therefore, by (2.19) and (2.20), we obtain the following theorem.

Theorem 2.5. Forn > 0, we have

de;SQ(n k’ Z Z < ) mSQ(k m)bn k-
k=0

k=0 m=0

Now, we observe that

2r
1 o 1 —t 1 t 1 —t 1 t
(1—t> _<1—t€ >X<1—te)x X(l—te “\1-¢°

2r—times

where r is natural number. By (2.21), we easily get

()

(Z dllfh) (Z ar, 12) i dli_lltzz,, . (i al_2>q'~tl2,~>

l lo,!
11=0 l2=0 lor_1=0 r=1 lor= r
n tTL
= g g diyayy - - - dor—102, | —.
ll,...,l n:
n=0 \l14---+l2.=n

(2.22)

On the other hand,

(%)w:i(nwnr_l) i”’<n+2r_l)n| (2.23)

n=0 n=0
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From (2.21), (2.22) and (2.23), we have

n+2r—1 n

R
where n > 0, and r € N.
Therefore, we obtain the following theorem.

Theorem 2.6. Forn >0, r € N. we have

SOCD = x (B () (=) ()

li4-+l2r=n

From (1.12), we note that

(2.24)

and

tT ¢ _ (T) t’ll
T > d - (2.25)

Comparing the coefficients on both sides of (2.24) and (2.25), we have

r) __ - ! (71)nil
d) = n! ; (r) o (n>r), (2.26)

and
di) =d" =...=d", =o.
Therefore, by (2.26), we obtain the following proposition.

Proposition 2.7. Forn >0, r € N, we have

dEf) "/l (_1)n—l
n! :;Q‘) (n—01" (n=r),
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and

di) =d" =...=d"”, =o.

T

By (1.2) and (1.12), we get

oo

ng;)% _

n=0

I
TN N
K

I
¢
Y

3

)tl> (i::o dn%> (2.27)
, ( "

Thus, by (2.27), w get

"= 1\ dn
(r) — _Yn-l
d,’) =n! ZE <l B r) R (2.28)

where n > r. Therefore, by (2.28), we obtain the following theorem.

Corollary 2.8. Forn >0, r € N, we have

dY SN 11\ du
n! _Z<l—r>(n—l)!’

l=r

and
di =d" =...=d" =o.

Now, we observe that

(2.29)
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On the other hand,

_ Z tn

n=0

Therefore, by (2.29) and (2.30), we obtain the following theorem.

Theorem 2.9. Forn > 0, we have

n d,(cr_,_r r+1
(k+r)! n—=~k)

From Proposition 2.7 and (1.12), we have

k=0

t" tm
m Z d Z )

n=0 n=r

nlogrtr & dl), g

— Z n+7‘ n+.r ' n' = Z (n+’r)TIT.

n=0 n

Thus, by (2.31), we get

] < d,;zr i

From (2.32) and (2.33), we have

atr) Dl =1\ dny
n-—+r — ’ n
ey (e oo

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)
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By (2.34), we get

™ _ n+r 'n r+1—1\ d,_;
i 7”( n "~§§; I )Y

_ Y A A A
(n—l—r).lzo ( ; CEDIk

(2.35)

3. Further remark

For r € N, we have

d\" 1 1 rl tremt
— =l =— e
dt) \1—¢ (1 - t)T+1 (1 — t)r L

tm i rin! t"
= v_ dn — g v
- HZT — " (4 ) n!

) (w al, t_> (i i) o
k= (k—lic_r) kl m=0 m!

N
SIS
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5
N
—
|-
~
N~~~
|

Il
3 e N NN
e iMe 52 52 52

Eal)5

m=0

q
3
Il
=

Therefore, by (3.1) and (3.2), we obtain the following theorem.
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Theorem 3.1. Forn >0, r € N, we have

n (n) ") n+r n4+r
Z (kir) dk+r - Z dm( m )

k=0 k m=0
Let
F=F@)= ! et
B 1t
From (3.3), we have
_p—t 1— -t —t
F(l) _ i (t) _ e ( t) +e _ te
dt (1—1)2 (1—1)2

Thus, by (3.4), we get

(1—t)FM =¢tF.
From (3.5), we have
—FO L1 -t)F® = F+tFY = F 4 (t —1)FY 4 FO)
=F-(1-t)F® 4+ 0,

where F(") = (4)" P(t), (n € N).
By (3.6), we get

2FM L (1-t)F® =F - (1-t)FY) = F —tF = (1 - t)F.
Thus, we note that
—2FW 4+ (1 —t)F® = (1 —t)F.

Now, we take the derivative on both sides of (3.8).

—2F® _FO L (1 -t)F® = —F+ (1 -t)FY = —(1 - t)F.
Thus, by (3.9), we get
—3F® 4+ (1-t)F® = (1 —t)F.
It is not difficult to show that

—4F®) + (1 —t)F® = (1 - t)F,
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and
—5FW 4 (1-t)F® = —(1 —t)F.

Continuing this process, we have

(DN Y1 —t)F = —(N+ DFMN 4 (1 =) FNTD | (n e N),

where F(N) = (%)N F(t). From (3.3), we note that

o0

t’n,
N-1 _ N-1_-—t __ N-1-n
()" (1 -t)F=(-1)"""e —Z()(—l) ok
) ARE S
—(N+1)F =—(N+1 [ — d, —
(¥ +1) (“(dt)nzo“m
tn N
—(N +1) Zd”
tn
_(N‘i‘]-)zdn—i-Nﬁv
n=0
and
(V+1) d N+1 oo o
-t FN) — (1 -t [ — dp—
G-0F =0 (F) Sy
N-1
(1—1) Z dn — _l)z‘”
n=N+1
tn
(1-1¢) Zdn+N+1—
n=0
o tn e tn
= Z dn+N+1H - Z ndn—i—Nﬁ
n=0 n=1
t’rl

- dN+1 + Z n+N+1 — ndn+N) '

n=1

From (3.13), (3.14), (3.15) and (3.17), we have

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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o0

Z(_l)N—l—nﬁ
n=0 n'
o0 tn
= ( — (N +1)dn + dN+1) + n; (dpyng1 —ndpyn — (N + 1)dpyn) o
(3.17)

By comparing the coefficients on both sides of (3.17), we obtain the following
theorem.

Theorem 3.2. For N € N, we have
(1) dny1= (N +1dy + (-D)V
and

(2) dpyNt1 =N - dpyn + (N + 1)dn+N + (_1)1\7—1—n.
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